




CONVERSION FACTORS U.S. Customary Units to SI Units

Quantity Converted from U.S. Customary To SI Equivalent

(Acceleration)

1 foot/second2 (ft/s2) meter/second2 (m/s2) 0.3048 m/s2

1 inch/second2 (in./s2) meter/second2 (m/s2) 0.0254 m/s2

(Area)

1 foot2 (ft2) meter2 (m2) 0.0929 m2

1 inch2 (in.2) meter2 (m2) 645.2 mm2

(Density, mass)

1 pound mass/inch3 (lbm/in.3) kilogram/meter3 (kg/m3) 27.68 Mg/m3

1 pound mass/foot3 (lbm/ft3) kilogram/meter3 (kg/m3) 16.02 kg/m3

(Energy, Work)

1 British thermal unit (BTU) Joule (J) 1055 J
1 foot-pound force (ft-lb) Joule (J) 1.356 J
1 kilowatt-hour Joule (J) 3:60� 106 J

(Force)

1 kip (1000 lb) Newton (N) 4.448 kN
1 pound force (lb) Newton (N) 4.448 N

(Length)

1 foot (ft) meter (m) 0.3048 m
1 inch (in.) meter (m) 25.4 mm
1 mile (mi), (U.S. statute) meter (m) 1.609 km
1 mile (mi), (international nautical) meter (m) 1.852 km

(Mass)

1 pound mass (lbm) kilogram (kg) 0.4536 kg
1 slug (lb-sec2/ft) kilogram (kg) 14.59 kg
1 metric ton (2000 lbm) kilogram (kg) 907.2 kg

(Moment of force)

1 pound-foot (lb � ft) Newton-meter (N �m) 1.356 N �m
1 pound-inch (lb � in.) Newton-meter (N �m) 0.1130 N �m

(Moment of inertia of an area)

1 inch4 meter4 (m4) 0:4162� 10�6 m4

(Moment of inertia of a mass)

1 pound-foot-second2(lb � ft � s2) kilogram-meter2 (kg �m2) 1.356 kg �m2

(Momentum, linear)

1 pound-second (lb �s) kilogram-meter/second (kg �m/s) 4.448 N �s

(Momentum, angular)

pound-foot-second (lb � ft �s) Newton-meter-second (N �m �s) 1.356 N �m �s



CONVERSION FACTORS U.S. Customary Units to SI Units (Continued )

Quantity Converted from U.S. Customary To SI Equivalent

(Power)

1 foot-pound/second (ft � lb/s) Watt (W) 1.356 W
1 horsepower (550 ft � lb/s) Watt (W) 745.7 W

(Pressure, stress)

1 atmosphere (std)(14.7.lb/in.2Þ Newton/meter2 (N/m2 or Pa) 101.3 kPa
1 pound/foot2 (lb/ft2) Newton/meter2 (N/m2 or Pa) 47.88 Pa
1 pound/inch2 (lb/in.2 or psi) Newton/meter2 (N/m2 or Pa) 6.895 kPa
1 kip/inch2(ksi) Newton/meter2 (N/m2 or Pa) 6.895 MPa

(Spring constant)

1 pound/inch (lb/in.) Newton/meter (N/m) 175.1 N/m

(Temperature)

T(�F) ¼ 1.8T(�C) þ 32

(Velocity)

1 foot/second (ft/s) meter/second (m/s) 0.3048 m/s
1 knot (nautical mi/h) meter/second (m/s) 0.5144 m/s
1 mile/hour (mi/h) meter/second (m/s) 0.4470 m/s
1 mile/hour (mi/h) kilometer/hour (km/h) 1.609 km/h

(Volume)

1 foot3 (ft3) meter3 (m3) 0.02832 m3

1 inch3 (in.3) meter3 (m3) 16:39� 10�6 m3







PHYSICAL PROPERTIES IN SI AND USCS UNITS

Property Sl USCS

Water (fresh)

specific weight 9.81 kN/m3 62.4 lb/ft3

mass density 1000 kg/m3 1.94 slugs/ft3

Aluminum

specific weight 26.6 kN/m3 169/lb/ft3

mass density 2710 kg/m3 5.26 slugs/ft3

Steel

specific weight 77.0 kN/m3 490 lb/ft3

mass density 7850 kg/m3 15.2 slugs/ft3

Reinforced concrete

specific weight 23.6 kN/m3 150 lb/ft3

mass density 2400 kg/m3 4.66 slugs/ft3

Acceleration of gravity

(on the earth’s surface)

Recommended value 9.81 m/s2 32.2 ft/s2

Atmospheric pressure

(at sea level)

Recommended value 101 kPa 14.7 psi

TYPICAL PROPERTIES OF SELECTED ENGINEERING MATERIALS

Ultimate 0.2% Yield

Strength Strength Modulus of Sheer Coefficient of

�u �y Elasticity Modulus Thermal Expansion, � Density, �

——————— —————— E G —————————— ——————

Material ksi MPa ksi MPa (106 psi GPa) ð106 psi) 10�6=�F 10�6=�C lb/in.3 kg/m3

Aluminum

Alloy 1100-H14

(99 % A1) 14 110(T) 14 95 10.1 70 3.7 13.1 23.6 0.098 2710

Alloy 2024-T3

(sheet and plate) 70 480(T) 50 340 10.6 73 4.0 12.6 22.7 0.100 2763

Alloy 6061-T6

(extruded) 42 260(T) 37 255 10.0 69 3.7 13.1 23.6 0.098 2710

Alloy 7075-T6

(sheet and plate) 80 550(T) 70 480 10.4 72 3.9 12.9 23.2 0.101 2795

Yellow brass (65% Cu, 35% Zn)

Cold-rolled 78 540(T) 63 435 15 105 5.6 11.3 20.0 0.306 8470

Annealed 48 330(T) 15 105 15 105 5.6 11.3 20.0 0.306 8470

Phosphor bronze

Cold-rolled (510) 81 560(T) 75 520 15.9 110 5.9 9.9 17.8 0.320 8860

Spring-tempered

(524) 122 840(T) — — 16 110 5.9 10.2 18.4 0.317 8780

Cast iron

Gray, 4.5%C,

ASTM A-48 25 170(T) — — 10 70 4.1 6.7 12.1 0.260 7200

95 650(C)

Malleable,

ASTM A-47 50 340(T) 33 230 24 165 9.3 6.7 12.1 0.264 7300

90 620(C) — —



TYPICAL PROPERTIES OF SELECTED ENGINEERING MATERIALS (Continued )

Ultimate 0.2% Yield

Strength Strength Modulus of Sheer Coefficient of

�u �y Elasticity Modulus Thermal Expansion, � Density, �

——————— —————— E G —————————— ——————

Material ksi MPa ksi MPa (106 psi GPa) ð106 psi) 10�6=�F 10�6=�C lb/in.3 kg/m3

Copper and its alloys

CDA 145 copper,

hard 48 331(T) 44 303 16 110 6.1 9.9 17.8 0.323 8940

CDA 172 beryllium

copper, hard 175 1210(T) 240 965 19 131 7.1 9.4 17.0 0.298 8250

CDA 220 bronze,

hard 61 421(T) 54 372 17 117 6.4 10.2 18.4 0.318 8800

CDA 260 brass,

hard 76 524(T) 63 434 16 110 6.1 11.1 20.0 0.308 8530

Magnesium alloy

(8.5% A1) 55 380(T) 40 275 4.5 45 2.4 14.5 26.0 0.065 1800

Monel alloy 400 (Ni-Cu)

Cold-worked 98 675(T) 85 580 26 180 — 7.7 13.9 0.319 8830

Annealed 80 550(T) 32 220 26 180 — 7.7 13.9 0.319 8830

Steel

Structural

(ASTM-A36) 58 400(T) 36 250 29 200 11.5 6.5 11.7 0.284 7860

High-strength low-alloy

ASTM-A242 70 480(T) 50 345 29 200 11.5 6.5 11.7 0.284 7860

Quenched and tempered alloy

ASTM-A514 120 825(T) 100 690 29 200 11.5 6.5 11.7 0.284 7860

Stainless, (302)

Cold-rolled 125 860(T) 75 520 28 190 10.6 9.6 17.3 0.286 7920

Annealed 90 620(T) 40 275 28 190 10.6 9.6 17.3 0.286 7920

Titanium alloy

(6% A1, 4% V) 130 900(T) 120 825 16.5 114 6.2 5.3 9.5 0.161 4460

Concrete

Medium strength 4.0 28(C) — — 3.5 25 — 5.5 10.0 0.084 2320

High strength 6.0 40(C) — — 4.5 30 — 5.5 10.0 0.084 2320

Granite 35 240(C) — — 10 69 — 4.0 7.0 0.100 2770

Glass, 98% silica 7 50(C) — — 10 69 — 44.0 80.0 0.079 2190

Melamine 6 41(T) — — 2.0 13.4 — 17.0 30.0 0.042 1162

Nylon, molded 8 55(T) — — 0.3 2 — 45.0 81.0 0.040 1100

Polystyrene 7 48(T) — — 0.45 3 — 40.0 72.0 0.038 1050

Rubbers

Natural 2 14(T) — — — — — 90.0 162.0 0.033 910

Neoprene 3.5 24(T) — — — — — 0.045 1250

Timber, air dry, parallel to grain

Douglas fir, construction

grade 7.2 50(C) — — 1.5 10.5 — varies varies 0.019 525

Eastern spruce 5.4 37(C) — — 1.3 9 — 1.7– 3– 0.016 440

Southern pine,construction

grade 7.3 50(C) — — 1.2 8.3 — 3.0 5.4 0.022 610

The values given in the table are average mechanical properties. Further verification may be necessary for final design or analysis. For ductile

materials, the compressive strength is normally assumed to equal the tensile strength. Abbreviations: C, compressive strength; T, tensile strength. For

an explanation of the numbers associated with the aluminums, cast irons, and steels, see ASM Metals Reference Book, latest ed., American Society

for Metals, Metals Park, Ohio 44073
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P reface   

Features and Approach
The purpose of this sixth edition is to provide an introductory approach to the finite element 
method that can be understood by both undergraduate and graduate students without the usual 
prerequisites (such as structural analysis and upper level calculus) required by many available 
texts in this area. The book is written primarily as a basic learning tool for the undergraduate 
student in civil and mechanical engineering whose main interest is in stress analysis and heat 
transfer, although material on fluid flow in porous media and through hydraulic networks and 
electrical networks and electrostatics is also included. The concepts are presented in suffi-
ciently simple form with numerous example problems logically placed throughout the book, so 
that the book serves as a valuable learning aid for students with other backgrounds, as well as 
for practicing engineers. The text is geared toward those who want to apply the finite element 
method to solve practical physical problems.

General principles are presented for each topic, followed by traditional applications of 
these principles, including longhand solutions, which are in turn followed by computer appli-
cations where relevant. The approach is taken to illustrate concepts used for computer analysis 
of large-scale problems.

The book proceeds from basic to advanced topics and can be suitably used in a two-
course sequence. Topics include basic treatments of (1) simple springs and bars, leading to 
two- and three-dimensional truss analysis; (2) beam bending, leading to plane frame, grid, and 
space frame analysis; (3) elementary plane stress/strain elements, leading to more advanced 
plane stress/strain elements and applications to more complex plane stress/strain analysis; 
(4) axisymmetric stress analysis; (5) isoparametric formulation of the finite element method; 
(6) three-dimensional stress analysis; (7) plate bending analysis; (8) heat transfer and fluid 
mass transport; (9) basic fluid flow through porous media and around solid bodies, hydraulic 
networks, electric networks, and electrostatics analysis; (10) thermal stress analysis; and  
(11) time-dependent stress and heat transfer.

Additional features include how to handle inclined or skewed boundary conditions, beam 
element with nodal hinge, the concept of substructure, the patch test, and practical consider-
ations in modeling and interpreting results.

The direct approach, the principle of minimum potential energy, and Galerkin’s residual 
method are introduced at various stages, as required, to develop the equations needed for 
analysis.

Appendices provide material on the following topics: (A) basic matrix algebra used 
throughout the text; (B) solution methods for simultaneous equations; (C) basic theory of elas-
ticity; (D) work-equivalent nodal forces; (E) the principle of virtual work; and (F) properties 
of structural steel shapes.
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More than 100 solved examples appear throughout the text. Most of these examples are 
solved “longhand” to illustrate the concepts. More than 570 end-of-chapter problems are pro-
vided to reinforce concepts. The answers to many problems are included in the back of the 
book to aid those wanting to verify their work. Those end-of-chapter problems to be solved 
using a computer program are marked with a computer symbol.

Additional Features
Additional features of this edition include updated notation used by most engineering instruc-
tors, chapter objectives at the start of each chapter to help students identify what content is 
most important to focus on and retain summary equations for handy use at the end of each 
chapter, additional information on modeling, and more comparisons of finite element solutions 
to analytical solutions.

New Features
Over 140 new problems for solution have been included, and additional design-type prob-
lems have been added to chapters 3, 5, 7, 11, and 12. Additional real-world applications from 
industry have been added to enhance student understanding and reinforce concepts. New space 
frames, solid-model-type examples, and problems for solution have been added. New examples 
from other fields now demonstrate how students can use the Finite Element Method to solve 
problems in a variety of engineering and mathematical physics areas. As in the 5th edition, 
this edition deliberately leaves out consideration of special purpose computer programs and 
suggests that instructors choose a program they are familiar with to integrate into their finite 
element course.

	Resources for Instructors
To access instructor resources, including a secure, downloadable Instructor’s Solution 
Manual and Lecture Note PowerPoint Slides, please visit our Instructor Resource Center at 
http://sso.cengage/com.

MindTap Online Course
This textbook is also available online through Cengage Learning’s MindTap, a personalized 
learning program. Students who purchase the MindTap have access to the book’s multime-
dia-rich electronic Reader and are able to complete homework and assessment material online, 
on their desktops, laptops, or iPads. The new MindTap Mobile App makes it easy for students 
to study anywhere, anytime. Instructors who use a Learning Management System (such as 
Blackboard or Moodle) for tracking course content, assignments, and grading, can seamlessly 
access the MindTap suite of content and assessments for this course. 
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With MindTap, instructors can:

■	 Personalize the Learning Path to match the course syllabus by rearranging content or 
appending original material to the online content  

■	 Connect a Learning Management System portal to the online course and Reader
■	 Highlight and annotate the digital textbook, then share their notes with students.
■	 Customize online assessments and assignments
■	 Track student engagement, progress and comprehension 
■	 Promote student success through interactivity, multimedia, and exercises

Additionally, students can listen to the text through ReadSpeaker, take notes in the digital 
Reader, study from and create their own Flashcards, highlight content for easy reference, and 
check their understanding of the material through practice quizzes and automatically-graded 
homework.

Suggested Topics
Following is an outline of suggested topics for a first course (approximately 44 lectures,  
52 minutes each) in which this textbook is used.

Topic Number of Lectures

Appendix A 1

Appendix B 1

Chapter 1 2

Chapter 2 3

Chapter 3, Sections 3.1–3.11, 3.14 and 3.15 5

Exam 1 1

Chapter 4, Sections 4.1–4.6 4

Chapter 5, Sections 5.1–5.3, 5.5 4

Chapter 6 4

Chapter 7 3

Exam 2 1

Chapter 9 2

Chapter 10 4

Chapter 11 3

Chapter 13, Sections 13.1–13.7 5

Chapter 15 3

Exam 3 1
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xv

N o tat i o n

English Symbols
ai generalized coordinates (coefficients used to express displacement in 

general form)
A cross-sectional area
[B] matrix relating strains to nodal displacements or relating temperature 

gradient to nodal temperatures
c specific heat of a material
C9[ ] matrix relating stresses to nodal displacements
C direction cosine in two dimensions
Cx, Cy, Cz direction cosines in three dimensions
{d} element and structure nodal displacement matrix, both in global 

coordinates
d9{ } local-coordinate element nodal displacement matrix

D bending rigidity of a plate
[D] matrix relating stresses to strains
D9[ ] operator matrix given by Eq. (10.2.16)

e exponential function
E modulus of elasticity
{f} global-coordinate nodal force matrix
f 9{ } local-coordinate element nodal force matrix

fb{ } body force matrix
fh{ } heat transfer force matrix
fq{ } heat flux force matrix
fQ{ } heat source force matrix
fs{ } surface force matrix

{F} global-coordinate structure force matrix
Fc{ } condensed force matrix
Fi{ } global nodal forces
F{ }0 equivalent force matrix

{g} temperature gradient matrix or hydraulic gradient matrix
G shear modulus
h heat-transfer (or convection) coefficient
i, j, m nodes of a triangular element
I principal moment of inertia
[J ] Jacobian matrix
k spring stiffness
[k] global-coordinate element stiffness or conduction matrix
kc[ ] condensed stiffness matrix, and conduction part of the stiffness matrix in 

heat-transfer problems
k9[ ] local-coordinate element stiffness matrix
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kn[ ] convective part of the stiffness matrix in heat-transfer problems
[K] global-coordinate structure stiffness matrix
Kxx, Kyy thermal conductivities (or permeabilities, for fluid mechanics) in the 

x and y directions, respectively
L length of a bar or beam element
m maximum difference in node numbers in an element
m(x) general moment expression
mx, my, mxy moments in a plate
m9[ ], [m] local element mass matrix
mi9[ ] local nodal moments

[M] global mass matrix
[M*] matrix used to relate displacements to generalized coordinates for a 

linear-strain triangle formulation
M9[ ] matrix used to relate strains to generalized coordinates for a linear-strain 

triangle formulation
nb bandwidth of a structure
nd number of degrees of freedom per node
[N] shape (interpolation or basis) function matrix
Ni shape functions
p surface pressure (or nodal heads in fluid mechanics)
pr , pz radial and axial (longitudinal) pressures, respectively
P concentrated load
P9[ ] concentrated local force matrix

q heat flow (flux) per unit area or distributed loading on a plate
q rate of heat flow
q* heat flow per unit area on a boundary surface
Q heat source generated per unit volume or internal fluid source
Q* line or point heat source
Qx, Qy transverse shear line loads on a plate
r, u, z radial, circumferential, and axial coordinates, respectively
R residual in Galerkin’s integral
Rb body force in the radial direction
Rix, Riy nodal reactions in x and y directions, respectively
s, t, z9 natural coordinates attached to isoparametric element
S surface area
t thickness of a plane element or a plate element
ti, t j, tm nodal temperatures of a triangular element
T temperature function
T` free-stream temperature
[T] displacement, force, and stiffness transformation matrix
Ti[ ] surface traction matrix in the i direction
u, v, w displacement functions in the x, y, and z directions, respectively
ui, vi, wi x, y, and z displacements at node i, respectively
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U strain energy
ΔU change in stored energy
v velocity of fluid flow
V shear force in a beam
w distributed loading on a beam or along an edge of a plane element
W work
xi, yi, zi nodal coordinates in the x, y, and z directions, respectively

x9, y9, z9 local element coordinate axes

x, y, z structure global or reference coordinate axes
[X ] body force matrix
Xb, Yb body forces in the x and y directions, respectively
Zb body force in longitudinal direction (axisymmetric case)  

or in the z direction (three-dimensional case)

Greek Symbols
a coefficient of thermal expansion

ia , ib , ig , id used to express the shape functions defined by Eq. (6.2.10) and 
Eqs. (11.2.5) through (11.2.8)

d spring or bar deformation
e normal strain

T«{ } thermal strain matrix
kx , ky , kxy curvatures in plate bending
n Poisson’s ratio

if nodal angle of rotation or slope in a beam element

hp functional for heat-transfer problem
pp total potential energy

r mass density of a material
wr weight density of a material

v angular velocity and natural circular frequency
Ω potential energy of forces
f fluid head or potential, or rotation or slope in a beam
s normal stress

Ts{ } thermal stress matrix
t shear stress and period of vibration
u angle between the x axis and the local x9 axis for two-dimensional 

problems
pu principal angle

xu , yu , zu angles between the global x, y, and z axes and the local x9 axis, 
respectively, or rotations about the x and y axes in a plate

[c] general displacement function matrix
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Other Symbols
d

dx

( )
derivative of a variable with respect to x

dt time differential
⋅( ) the dot over a variable denotes that the variable is being differentiated 

with respect to time
[ ] denotes a rectangular or a square matrix
{ } denotes a column matrix
(_) the underline of a variable denotes a matrix
(9 ) the prime next to a variable denotes that the variable is being described 

in a local coordinate system
2[ ] 1 denotes the inverse of a matrix
T[ ] denotes the transpose of a matrix

�

�x

( )
partial derivative with respect to x

�

� x

( )

{ }
partial derivative with respect to each variable in {d}
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Introduction

Chapter Objectives

■	 To present an introduction to the finite element method.

■	 To provide a brief history of the finite element method.

■	 To introduce matrix notation.

■	 To describe the role of the computer in the development of the finite element 
method.

■	 To present the general steps used in the finite element method.

■	 To illustrate the various types of elements used in the finite element method.

■	 To show typical applications of the finite element method.

■	 To summarize some of the advantages of the finite element method.

Prologue
The finite element method is a numerical method for solving problems of engineering and 
mathematical physics. Typical problem areas of interest in engineering and mathematical 
physics that are solvable by use of the finite element method include structural analysis, heat 
transfer, fluid flow, mass transport, and electromagnetic potential.

For physical systems involving complicated geometries, loadings, and material proper-
ties, it is generally not possible to obtain analytical mathematical solutions to simulate the 
response of the physical system. Analytical solutions are those given by a mathematical 
expression that yields the values of the desired unknown quantities at any location in a body 
(here total structure or physical system of interest) and are thus valid for an infinite number of 
locations in the body. These analytical solutions generally require the solution of ordinary or 
partial differential equations, typically created by engineers, physicists, and mathematicians 
to eliminate the need for the creation and testing of numerous prototype designs, which may 
be quite costly. Because of the complicated geometries, loadings, and material properties, the 
solution to these differential equations is usually not obtainable. Hence, we need to rely on 
numerical methods, such as the finite element method, that can approximate the solution to 
these equations.

The finite element formulation of the problem results in a system of simultaneous algebraic 
equations for solution, rather than requiring the solution of differential equations. These numerical 

C h a p t e r 

1
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methods yield approximate values of the unknowns at discrete numbers of points in the contin-
uum. Hence, this process of modeling a body by dividing it into an equivalent system of smaller 
bodies of units (finite elements) interconnected at points common to two or more elements (nodal 
points or nodes) and/or boundary lines and/or surfaces is called discretization. Figure 1–1 shows 
a cross section of a concrete dam and a bicycle wrench, respectively, that illustrate this process 
of discretization, where the dam has been divided into 490 plane triangular elements and the 
wrench has been divided into 254 plane quadrilateral elements. In both models the elements are 
connected at nodes and along inter element boundary lines. In the finite element method, instead 
of solving the problem for the entire body in one operation, we formulate the equations for each 
finite element and then combine them to obtain the solution for the whole body.

Briefly, the solution for structural problems typically refers to determining the displace-
ments at each node and the stresses within each element making up the structure that is sub-
jected to applied loads. In nonstructural problems, the nodal unknowns may, for instance, be 
temperatures or fluid pressures due to thermal or fluid fluxes.

This chapter first presents a brief history of the development of the finite element method. 
You will see from this historical account that the method has become a practical one for 
solving engineering problems only in the past 60 years (paralleling the developments asso-
ciated with the modern high-speed electronic digital computer). This historical account is 
followed by an introduction to matrix notation; then we describe the need for matrix methods 
(as made practical by the development of the modern digital computer) in formulating the 
equations for solution. This section discusses both the role of the digital computer in solving 
the large systems of simultaneous algebraic equations associated with complex problems and 
the development of numerous computer programs based on the finite element method. Next, a 
general description of the steps involved in obtaining a solution to a problem is provided. This 
description includes discussion of the types of elements available for a finite element method 
solution. Various representative applications are then presented to illustrate the capacity of the 
method to solve problems, such as those involving complicated geometries, several different 
materials, and irregular loadings. Chapter 1 also lists some of the advantages of the finite 
element method in solving problems of engineering and mathematical physics. Finally, we 
present numerous features of computer programs based on the finite element method.

 Figure 1–1  Two-dimensional models of (a) discretized dam and (b) discretized bicycle wrench 
(Applied loads are not shown.) All elements and nodes lie in a plane.

Typical �xed node

Fixed nodes along bottom of dam(a) (b)
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		 1.1	B rief History
This section presents a brief history of the finite element method as applied to both structural 
and nonstructural areas of engineering and to mathematical physics. References cited here are 
intended to augment this short introduction to the historical background.

The modern development of the finite element method began in the 1940s in the field of 
structural engineering with the work by Hrennikoff [1] in 1941 and McHenry [2] in 1943, 
who used a lattice of line (one-dimensional) elements (bars and beams) for the solution of 
stresses in continuous solids. In a paper published in 1943 but not widely recognized for many 
years, Courant [3] proposed setting up the solution of stresses in a variational form. Then he 
introduced piecewise interpolation (or shape) functions over triangular subregions making up 
the whole region as a method to obtain approximate numerical solutions. In 1947 Levy [4] 
developed the flexibility or force method, and in 1953 his work [5] suggested that another 
method (the stiffness or displacement method) could be a promising alternative for use in 
analyzing statically redundant aircraft structures. However, his equations were cumbersome 
to solve by hand, and thus the method became popular only with the advent of the high-speed 
digital computer.

In 1954 Argyris and Kelsey [6, 7] developed matrix structural analysis methods using 
energy principles. This development illustrated the important role that energy principles 
would play in the finite element method.

The first treatment of two-dimensional elements was by Turner et al. [8] in 1956. 
They derived stiffness matrices for truss elements, beam elements, and two-dimensional 
triangular and rectangular elements in plane stress and outlined the procedure commonly 
known as the direct stiffness method for obtaining the total structure stiffness matrix. 
Along with the development of the high-speed digital computer in the early 1950s, the 
work of Turner et al. [8] prompted further development of finite element stiffness equa-
tions expressed in matrix notation. The phrase finite element was introduced by Clough 
[9] in 1960 when both triangular and rectangular elements were used for plane stress 
analysis.

A flat, rectangular-plate bending-element stiffness matrix was developed by Melosh [10] 
in 1961. This was followed by development of the curved-shell bending-element stiffness 
matrix for axisymmetric shells and pressure vessels by Grafton and Strome [11] in 1963.

Extension of the finite element method to three-dimensional problems with the develop-
ment of a tetrahedral stiffness matrix was done by Martin [12] in 1961, by Gallagher et al. [13] 
in 1962, and by Melosh [14] in 1963. Additional three-dimensional elements were studied by 
Argyris [15] in 1964. The special case of axisymmetric solids was considered by Clough and 
Rashid [16] and Wilson [17] in 1965.

Most of the finite element work up to the early 1960s dealt with small strains and small 
displacements, elastic material behavior, and static loadings. However, large deflection and 
thermal analysis were considered by Turner et al. [18] in 1960 and material nonlinearities by 
Gallagher et al. [13] in 1962, whereas buckling problems were initially treated by Gallagher 
and Padlog [19] in 1963. Zienkiewicz et al. [20] extended the method to visco elasticity prob-
lems in 1968.

In 1965 Archer [21] considered dynamic analysis in the development of the consistent-mass 
matrix, which is applicable to analysis of distributed-mass systems such as bars and beams in 
structural analysis.
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With Melosh’s [14] realization in 1963 that the finite element method could be set up 
in terms of a variational formulation, it began to be used to solve nonstructural applications. 
Field problems, such as determination of the torsion of a shaft, fluid flow, and heat conduction, 
were solved by Zienkiewicz and Cheung [22] in 1965, Martin [23] in 1968, and Wilson and 
Nickel [24] in 1966.

Further extension of the method was made possible by the adaptation of weighted resid-
ual methods, first by Szabo and Lee [25] in 1969 to derive the previously known elasticity 
equations used in structural analysis and then by Zienkiewicz and Parekh [26] in 1970 for 
transient field problems. It was then recognized that when direct formulations and variational 
formulations are difficult or not possible to use, the method of weighted residuals may at 
times be appropriate. For example, in 1977 Lyness et al. [27] applied the method of weighted 
residuals to the determination of magnetic field.

In 1976, Belytschko [28, 29] considered problems associated with large-displacement 
nonlinear dynamic behavior and improved numerical techniques for solving the resulting sys-
tems of equations. For more on these topics, consult the texts by Belytschko, Liu, Moran [58], 
and Crisfield [61, 62].

A relatively new field of application of the finite element method is that of bioengineering 
[30, 31]. This field is still troubled by such difficulties as nonlinear materials, geometric non-
linearities, and other complexities still being discovered.

From the early 1950s to the present, enormous advances have been made in the appli-
cation of the finite element method to solve complicated engineering problems. Engineers, 
applied mathematicians, and other scientists will undoubtedly continue to develop new appli-
cations. For an extensive bibliography on the finite element method, consult the work of Kard-
estuncer [32], Clough [33], or Noor [57].

	 1.2	 Introduction to Matrix Notation
Matrix methods are a necessary tool used in the finite element method for purposes of simpli-
fying the formulation of the element stiffness equations, for purposes of longhand solutions of 
various problems, and, most important, for use in programming the methods for high-speed 
electronic digital computers. Hence matrix notation represents a simple and easy-to-use nota-
tion for writing and solving sets of simultaneous algebraic equations.

Appendix A discusses the significant matrix concepts used throughout the text. We will 
present here only a brief summary of the notation used in this text.

A matrix is a rectangular array of quantities arranged in rows and columns that is 
often used as an aid in expressing and solving a system of algebraic equations. As exam-
ples of matrices that will be described in subsequent chapters, the force components  
( , , , , , , . . . , , , )1 1 1 2 2 2F F F F F F F F Fx y z x y z nx ny nz  acting at the various nodes or points (1, 2, . . . , n) on 
a structure and the corresponding set of nodal displacements u v w u v w u v wn n n( , , , , , , . . ., , , )1 1 1 2 2 2  
can both be expressed as matrices:
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The subscripts to the right of F identify the node and the direction of force, respectively. For 
instance, F x1  denotes the force at node 1 applied in the x direction. The x, y, and z displace-
ments at a node are denoted by u, v, and w, respectively. The subscript next to u, v, and w 
denotes the node. For instance, u ,1  ,1v  and 1w  denote the displacement components in the 
x, y, and z directions, respectively, at node 1. The matrices in Eqs. (1.2.1) are called column 
matrices and have a size of 3 1n . The brace notation {} will be used throughout the text to 
denote a column matrix. The whole set of force or displacement values in the column matrix 
is simply represented by {F} or {d}.

The more general case of a known rectangular matrix will be indicated by use of the 
bracket notation [ ]. For instance, the element and global structure stiffness matrices [k] and 
[K], respectively, developed throughout the text for various element types (such as those in 
Figure 1–2 on page 11), are represented by square matrices given as
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and
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where, in structural theory, the elements kij  and Kij are often referred to as stiffness influence 
coefficients.
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You will learn that the global nodal forces {F} and the global nodal displacements {d} are 
related through use of the global stiffness matrix [K] by

	 F K d5[ ]{ }{ } 	 (1.2.4)

Equation (1.2.4) is called the global stiffness equation and represents a set of simultane-
ous equations. It is the basic equation formulated in the stiffness or displacement method of 
analysis.

To obtain a clearer understanding of elements Kij  in Eq. (1.2.3), we use Eq. (1.2.1) and 
write out the expanded form of Eq. (1.2.4) as
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	 (1.2.5)

Now assume a structure to be forced into a displaced configuration defined by 
u v w wn5 5 5 51, 01 1 1 � . Then from Eq. (1.2.5), we have

	 F K F K F Kx y nz n5 5 5, . . . ,1 11 1 21 1	 (1.2.6)

Equations (1.2.6) contain all elements in the first column of [K]. In addition, they show that 
these elements, , , . . . ,11 21 1K K Kn , are the values of the full set of nodal forces required to 
maintain the imposed displacement state. In a similar manner, the second column in [K] rep-
resents the values of forces required to maintain the displaced state v 511  and all other nodal 
displacement components equal to zero. We should now have a better understanding of the 
meaning of stiffness influence coefficients.

Subsequent chapters will discuss the element stiffness matrices [k] for various element 
types, such as bars, beams, plane stress, and three-dimensional stress. They will also cover the 
procedure for obtaining the global stiffness matrices [K] for various structures and for solving 
Eq. (1.2.4) for the unknown displacements in matrix {d}.

Using matrix concepts and operations will become routine with practice; they will be 
valuable tools for solving small problems longhand. And matrix methods are crucial to the 
use of the digital computers necessary for solving complicated problems with their associated 
large number of simultaneous equations.

	 1.3	R ole of the Computer
As we have said, until the early 1950s, matrix methods and the associated finite element 
method were not readily adaptable for solving complicated problems. Even though the finite 
element method was being used to describe complicated structures, the resulting large number 
of algebraic equations associated with the finite element method of structural analysis made 
the method extremely difficult and impractical to use. However, with the advent of the com-
puter, the solution of thousands of equations in a matter of minutes became possible.

The first modern-day commercial computer appears to have been the Univac, IBM 701, 
which was developed in the 1950s. This computer was built based on vacuum-tube technology. 
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Along with the UNIVAC came the punch-card technology whereby programs and data were 
created on punch cards. In the 1960s, transistor-based technology replaced the vacuum-tube 
technology due to the transistor’s reduced cost, weight, and power consumption and its higher 
reliability. From 1969 to the late 1970s, integrated circuit-based technology was being devel-
oped, which greatly enhanced the processing speed of computers, thus making it possible to 
solve larger finite element problems with increased degrees of freedom. From the late 1970s 
into the 1980s, large-scale integration as well as workstations that introduced a windows-type 
graphical interface appeared along with the computer mouse. The first computer mouse 
received a patent on November 17, 1970. Personal computers had now become mass-market 
desktop computers. These developments came during the age of networked computing, which 
brought the Internet and the World Wide Web. In the 1990s the Windows operating system was 
released, making IBM and IBM-compatible PCs more user friendly by integrating a graphical 
user interface into the software.

The development of the computer resulted in the writing of computational programs. 
Numerous special-purpose and general-purpose programs have been written to handle various 
complicated structural (and nonstructural) problems. Programs such as [46–56] illustrate the 
elegance of the finite element method and reinforce understanding of it.

In fact, finite element computer programs now can be solved on single-processor machines, 
such as a single desktop or laptop personal computer (PC) or on a cluster of computer nodes. 
The powerful memories of the PC and the advances in solver programs have made it possible 
to solve problems with over a million unknowns.

To use the computer, the analyst, having defined the finite element model, inputs the 
information into the computer. This information may include the position of the element nodal 
coordinates, the manner in which elements are connected, the material properties of the ele-
ments, the applied loads, boundary conditions, or constraints, and the kind of analysis to be 
performed. The computer then uses this information to generate and solve the equations nec-
essary to carry out the analysis.

	 1.4	 General Steps of the Finite Element Method
This section presents the general steps included in a finite element method formulation and 
solution to an engineering problem. We will use these steps as our guide in developing solu-
tions for structural and nonstructural problems in subsequent chapters.

For simplicity’s sake, for the presentation of the steps to follow, we will consider only 
the structural problem. The nonstructural heat-transfer, fluid mechanics, and electrostatics 
problems and their analogies to the structural problem are considered in Chapters 13 and 14.

Typically, for the structural stress-analysis problem, the engineer seeks to determine dis-
placements and stresses throughout the structure, which is in equilibrium and is subjected to 
applied loads. For many structures, it is difficult to determine the distribution of deformation 
using conventional methods, and thus the finite element method is necessarily used.

There are three primary methods that can be used to derive the finite element equations 
of a physical system. These are (1) the direct method or direct equilibrium method for struc-
tural analysis problems, (2) the variational methods consisting of among the subsets energy 
methods and the principle of virtual work, and (3) the weighted residual methods. We briefly 
describe these three primary methods as follows, and more details of each will be described 
later in this section under step 4.
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Direct Methods
The direct method, being the simplest and yielding a clear physical insight into the finite ele-
ment method, is recommended in the initial stages of learning the concepts of the finite element 
method. However, the direct method is limited in its application to deriving element stiffness 
matrices for one-dimensional elements involving springs, uniaxial bars, trusses, and beams.

There are two general direct approaches traditionally associated with the finite element 
method as applied to structural mechanics problems. One approach, called the force, or flexi-
bility, method, uses internal forces as the unknowns of the problem. To obtain the governing 
equations, first the equilibrium equations are used. Then necessary additional equations are 
found by introducing compatibility equations. The result is a set of algebraic equations for 
determining the redundant or unknown forces.

The second approach, called the displacement, or stiffness, method, assumes the displace-
ments of the nodes as the unknowns of the problem. For instance, compatibility conditions 
requiring that elements connected at a common node, along a common edge, or on a common 
surface before loading remain connected at that node, edge, or surface after deformation takes 
place are initially satisfied. Then the governing equations are expressed in terms of nodal 
displacements using the equations of equilibrium and an applicable law relating forces to 
displacements.

These two direct approaches result in different unknowns (forces or displacements) in the 
analysis and different matrices associated with their formulations (flexibilities or stiffnesses). 
It has been shown [34] that, for computational purposes, the displacement (or stiffness) 
method is more desirable because its formulation is simpler for most structural analysis prob-
lems. Furthermore, a vast majority of general-purpose finite element programs have incorpo-
rated the displacement formulation for solving structural problems. Consequently, only the 
displacement method will be used throughout this text.

Variational Methods
The variational method is much easier to use for deriving the finite element equations for 
two- and three-dimensional elements than the direct method. However, it requires the existence 
of a functional, that upon minimizing yields the stiffness matrix and related element equations. 
For structural/stress analysis problems, we can use the principle of minimum potential energy 
as the functional, for this principle is a relatively easy physical concept to understand and has 
likely been introduced to the reader in an undergraduate course in basic applied mechanics [35].

It can be used to develop the governing equations for both structural and nonstructural 
problems. The variational method includes a number of principles. One of these principles, 
used extensively throughout this text because it is relatively easy to comprehend and is often 
introduced in basic mechanics courses, is the theorem of minimum potential energy that 
applies to materials behaving in a linear-elastic manner. This theorem is explained and used 
in various sections of the text, such as Section 2.6 for the spring element, Section 3.10 for 
the bar element, Section 4.7 for the beam element, Section 6.2 for the constant strain triangle 
plane stress and plane strain element, Section 9.1 for the axisymmetric element, Section 11.2 
for the three-dimensional solid tetrahedral element, and Section 12.2 for the plate bending 
element. A functional analogous to that used in the theorem of minimum potential energy is 
then employed to develop the finite element equations for the nonstructural problem of heat 
transfer presented in Chapter 13.
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Another variational principle often used to derive the governing equations is the prin-
ciple of virtual work. This principle applies more generally to materials that behave in a 
linear-elastic fashion, as well as those that behave in a nonlinear fashion. The principle of 
virtual work is described in Appendix E for those choosing to use it for developing the general 
governing finite element equations that can be applied specifically to bars, beams, and two- 
and three-dimensional solids in either static or dynamic systems.

Weighted Residual Methods
The weighted residual methods [36] allow the finite element method to be applied directly to 
any differential equation without having the existence of a variational principle. Section 3.12 
introduces the Galerkin method (a very well-known residual method) for deriving the bar ele-
ment stiffness matrix and associated element equations. Section 3.13 introduces other residual 
methods for solving the governing differential equation for the axial displacement along a bar.

The finite element method involves modeling the structure using small interconnected 
elements called finite elements. A displacement function is associated with each finite ele-
ment. Every interconnected element is linked, directly or indirectly, to every other element 
through common (or shared) interfaces, including nodes and/or boundary lines and/or sur-
faces. By using known stress/strain properties for the material making up the structure, one 
can determine the behavior of a given node in terms of the properties of every other element in 
the structure. The total set of equations describing the behavior of each node results in a series 
of algebraic equations best expressed in matrix notation.

We now present the steps, along with explanations necessary at this time, used in the 
finite element method formulation and solution of a structural problem. The purpose of setting 
forth these general steps now is to expose you to the procedure generally followed in a finite 
element formulation of a problem. You will easily understand these steps when we illustrate 
them specifically for springs, bars, trusses, beams, plane frames, plane stress, axisymmetric 
stress, three-dimensional stress, plate bending, heat transfer, fluid flow, and electrostatics in 
subsequent chapters. We suggest that you review this section periodically as we develop the 
specific element equations.

Keep in mind that the analyst must make decisions regarding dividing the structure or 
continuum into finite elements and selecting the element type or types to be used in the anal-
ysis (step 1), the kinds of loads to be applied, and the types of boundary conditions or sup-
ports to be applied. The other steps, 2 through 7, are carried out automatically by a computer 
program.

Step 1 Discretize and Select the Element Types
Step 1 involves dividing the body into an equivalent system of finite elements with associ-
ated nodes and choosing the most appropriate element type to model most closely the actual 
physical behavior. The total number of elements used and their variation in size and type 
within a given body are primarily matters of engineering judgment. The elements must be 
made small enough to give usable results and yet large enough to reduce computational effort. 
Small elements (and possibly higher-order elements) are generally desirable where the results 
are changing rapidly, such as where changes in geometry occur; large elements can be used 
where results are relatively constant. We will have more to say about discretization guide-
lines in later chapters, particularly in Chapter 7, where the concept becomes quite significant. 
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